Fatal complications in reconstructive plastic surgery and ways of their prevention
https://doi.org/10.52581/1814-1471/78-79/01
Abstract
The world experience and experience of the Institute of Microsurgery (Tomsk, Russia) in rescuing dying free flaps are summarized in the paper. The issues related to the prevention of vascular disorders, which in 85–95% of cases lead to fatal complications in the form of total necrosis of the reperfused flap, are discussed. We are talking about the immediate, early and late complications due to the compromise of blood flow along the vascular pedicle (arterial, venous, arterial-venous). Unlike irreversible disorders, temporary disturbances in blood supply in free flaps are caused by the consequences of primary ischemia and reperfusion. Their duration and reversibility depend on the tissue composition, i.e. from the anoxic resistance of the tissues constituting the flap and, of course, the structures that form the wall of the flap vessels themselves. With a short duration of primary ischemia (up to 1 hour) and compensated reperfusion syndrome, temporary vascular disorders are manifested by flap skin flushing and metabolic edema of its tissues, which disappear 10-40 minutes after reperfusion. The indications for revision of the vascular pedicle are doubts about the adequacy of blood flow in the flap due to the appearance of the first signs of anastomotic thrombosis. The highest rates of flap rescue are achieved after revision of the vascular pedicle no later than 90 minutes after the first signs of thrombosis appear. It is important that the surgeon performing these microvascular anastomoses does the revision. The development of technologies for rescuing a perishing flap has become especially relevant in the last decade. This is due to the rapid development of reconstructive microsurgery of head and neck tumors. In such patients, there is practically no alternative to free transplantation of tissue complexes for the reconstruction of the lower jaw, tongue, soft tissue defect of the lower face and neck. The main technical problem leading to fatal complications after transplantation of a radial, peroneal, anterolateral femur flap is the difficulty of finding recipient vessels suitable for revascularization in soft tissues previously exposed to radiation. The search for alternative recipient vessels during the primary reconstruction of defects, for example, in the oral cavity, is accompanied by a significant increase in the duration of primary ischemia (up to 3–4 hours) and the death of flaps. The preservation of the viability of such free flaps is possible only by their temporary extracorporeal perfusion with extracorporeal membrane oxygenation. It is possible to preserve the viability of free flaps for 2 weeks (without microvascular anastomoses) during tertiary reconstruction of head and neck defects by continuous extracorporeal perfusion of the flap until it is completely engrafted in the recipient area. There is experience of using a tubular non-free radial flap on the long vascular pedicle of the radial vascular bundle (from the wrist to the ulnar fossa) in tertiary tissue reconstruction after removal of head and neck tumors.
About the Authors
V. F. BaytingerRussian Federation
Vladimir F. Baytinger - Dr. Med. sci., Professor, President, Institute of Microsurgery; Professor of the Department of Operative Surgery and Topographic Anatomy, Krasnoyarsk SMU named after Prof. V.F. VoynoYasenetsky.
96, Ivan Chernykh st., Tomsk, 634063; 1, Partizan Zheleznyak st., Krasnoyarsk, 660022. Tel.: +7 (3822) 64-57-53
K. V. Selianinov
Russian Federation
Konstantin V. Selianinov - Dr. Med. sci., Associate Professor, deputy Director for medical work.
96, Ivan Chernykh st., Tomsk, 634063. Tel.: +7 (3822) 64-53-78
References
1. Chen K.T., Mardini S., Chuang D.C. et al. Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers. Plast. Reconstr. Surg. 2007;.120(1):187-195. doi: 10.1097/01.prs.0000264077.07779.50
2. Fu Chan Wei, Mardini S. Flaps and reconstructive surgery. Elsevier Inc., Taipei, 2009. 638 p.
3. Khouri R. K., Cooley B. C., Kunselman A. R. et al. A prospective study of microvascular free-flap surgery and outcome. Plast. Reconstr. Surg. 1998;102(3):711-721. doi: 10.1097/00006534-199809030-00015
4. Yazar S., Hung-Chi Chen, Mardini S. Augmentation of venous drainage be a venous anastomosis for pedicled flaps. J. Reconstr.Microsurg. 2008;24(5):369-376. doi: 10.1055/s-2008-1080531 Epub 2008 Jul 2.
5. Acland R.D., Sabapathy S.R. Acland’s practice manual for microvascular surgery. 3th Ed. Louisville-Coimbatore, 2008. 122 p.
6. Hidalgo D.A., Jones C.S. The role of emergent exploration in free-tissue transfer: a review of 150 consecutive cases. Plast. Reconstr. Surg. 1990; 86:492-498.
7. Fong H.C., Levin L.S. Avoiding complications in microsurgery and strategies for flap take-back. Arch. Plast. Surg. 2019;46(5):488-491. doi: 10.5999/aps.2019.00059 Epub 2019 Aug 30.
8. Golyana S.I., Govorov A.V., Zaytseva N.V. et al. Analiz oslozhneniy pri mikrohirurgicheskoy autotransplantatsii pal'tsev stop u detey. Metody profilaktiki i bor'by s nimi [Analysis of complications in microsurgical autotransplantation of toes in children. Methods of prevention and control of them. In: Scientific and practical conference with international participation "Congenital and acquired pathology of the upper limbs in children (diagnosis, treatment, rehabilitation)", September 29–30, 2016. Collection of abstracts. St. Petersburg, 2016. P. 25–26. (In Russ.).
9. Biemer E., Duspiva W. Reconstructive microvascular surgery. Springer-Verlag: Berlin, Heidelberg, New York, 1982. 151 p.
10. Egozi D., Fodor L., Ullmann Y. Salvage of compromised free flaps in trauma cases with combined modalities. Microsurgery. 2011;31(2):109-115. doi: 10.1002/micr.20852. Epub 2011 Jan 28
11. Rinker B.D., Stewart D.H., Pu L.L. et al. Role of recombinant tissue plasminogen activator in free flap salvage. J. Reconstr. Microsurg. 2007;23(2):69-73. doi: 10.1055/s-2007-970185
12. Conrad M.H., Adams W.P. Jr. Pharmacologic optimization of microsurgery in the new millennium. Plast. Reconstr. Surg. 2001;108:2088-2096. doi: 10.1097/00006534-200112000-00041
13. Hartrampf C.R. Jr, Drazan L., Noel R.T. A mechanical leech for transverse rectus abdominis musculocutaneous flaps. Ann. Plast. Surg. 1993;31(2):103-105. doi: 10.1097/00000637-199308000-00002
14. Stasch T., Goon P., Haywood R.M. et al. DIEP flap rescue be venesection of the superficial epigastric vein. Ann. Plast. Surg. 2009;62(4):372-373. doi: 10.1097/SAP.0b013e318184aab5
15. Blondeel P.N., Amstein M., Verstraete K. et al. Venous congestion and blood flow in free transverse rectus abdominis myocutaneous and deep inferior epigastric perforator flaps. Plast. Reconstr. Surg. 2000;106:12951299. doi: 10.1097/00006534-200011000-00009
16. Gursoy K., Kankaya Y., Uysal A. et al. Dealing with venous congestion of free flaps. J. Craniofac. Surg. 2008;19(6):1645-1647. doi: 10.1097/SCS.0b013e31818c0318
17. Wong C.H., Tan B.K. Intermittent short saphenous vein phlebotomy: an effective technique of relieving venous congestion in the distally based sural artery flap. Ann. Plast. Surg. 2007;58(3):303-307. doi: 10.1097/01.sap.0000238458.33475.ca
18. Kroll S.S., Schusterman M.A., Reece G.P. et al. Timing of pedicle thrombosis and flap loss after free-transfer. Plast. Reconstr. Surg. 1996;98:1230-1233. doi: 10.1097/00006534-199612000-00017
19. Mirzabeigi M.N., Wang T., Kovach S.J. et al. Free flap take-back following postoperative microvascular compromise: predicting salvage versus failure. Plast. Reconstr. Surg. 2012;130:579-589. doi: 10.1097/PRS.0b013e31825dbfb7
20. Utley D.S., Koch R.J, Goode R.L. The failing flap in facial plastic and reconstructive surgery: role of medicinal leech. Laryngoscope. 1998;108(8, Pt1):1129-1135. doi: 10.1097/00005537-199808000-00005
21. Tran N.V., Bishop A.T., Convery P.A. et al. Venous congestive flap salvage with subcutaneous rtPA. Microsurgery. 2006;26(5):370-372. doi: 10.1002/micr.20254
22. Ayhan S., Uygur S., Kucukoduk I. et al. Salvage of congested DIEP flap with subcutaneous recombinant tissue plasminogen activator treatment. J. Plast. Reconstr. Aesthet. Surg. 2009;62(11):e453-e454. doi: 10.1016/j.bjps.2008.05.043. Epub 2008 Oct 11
23. Ihler F., Matthias C., Canis M. Free flap salvage with subcutaneous injection of tissue plasminogen activator in head and neck parients. Microsurgery. 2013;33(6):478-481. doi: 10.1002/micr.22132. Epub 2013 Jul 11
24. Yoon A., Jones N.F. Critical time for neovascularization/angiogenesis to allow free flap survival after delayed postoperative anastomotic compromise without surgical intervention: a review of the literature. Microsurgery, 2016;36(7):604-612. doi: 10.1002/micr.30082. Epub 2016 Jul 4
25. Saldago C.J., Smith A., Kim S. et al. Effects of late loss of arterial inflow of free flap survival. J. Reconstr. Microsurg. 2002;18:579-584. doi: 10.1055/s-2002-35095
26. Gurunluoglu R. Can a revascularized thumb survive with no digital inflow? Plast. Reconstr. Surg. 2010;125:212e214е. doi: 10.1097/PRS.0b013e3181d51606
27. Adani R., Lazzaro L., Tarallo L. Great toe transfer survival after thrombosis at 7 days. Eur. J. Plast. Surg. 2013;36:211-212.
28. Khoo C., Bailey B. A behaviour of free muscle and musculocutaneous flaps after early loss of axial blood supply. Brit. J. Plast. Surg. 1982;35:43-46. doi: 10.1016/0007-1226(82)90082-0
29. Rath T., Piza H., Opitz A. Survival of a free musculocutaneous flap after early loss arterial blood supply. Brit. J. Plast. Surg. 1986;39:530-532. doi: 10.1016/0007-1226(86)90129-3
30. Kissun D., Shaw R., Vaughan E. Survival of a free flap after arterial disconnection at six days. Brit. J. Oral Maxillofac. Surg. 2004;42:163-165. doi: 10.1016/S0266-4356(03)00265-1
31. Nelson J.A., Kim E.M., Eftekhan K. et al. Late venous thrombosis in free flap breast reconstruction. Strategies for salvage after this real entity. Plast. Reconstr. Surg. 2012; 129:8e-15 e. doi: 10.1097/PRS.0b013e3182361f7f
32. Skrbic S., Stanec Z. Early rupture of the arterial anastomoses with free flap survival. Injury. 1995;26:494-496. doi: 10.1016/0020-1383(95)00068-k
33. Rothaus K.O., Acland R.D. Free flap neo-vascularization: case report. Brit. J. Plast. Surg. 1983;36:348-349. doi: 10.1016/s0007-1226(83)90059-0
34. Burns A., Avery B.S., Edge C.J. Survival of microvascular free flaps in head and neck surgery after early interruption of the vascular pedicle. Brit. J. Oral Maxillofac. 2005;43:426-427. doi: 10.1016/j.bjoms.2005.01.013
35. Godden D., Thomas S. Survival of a free flap after vascular disconnection at 9 days. Brit. J. Oral Maxillofac. 2002;40:446-447.
36. Wise L., Harsha M., Kim N. et al. Free flap survival despite early loss of the vascular pedicle. Head Neck. 2011;33:1068-1071. doi: 10.1002/hed.21354. Epub 2010 Feb 19
37. Amato M.M., Rodriguez L.R., Lineaweaver W.C. et al. Survival of free tissue transfer following internal jugular venous thrombosis. Plast. Reconstr. Surg. 1999;104:1406-1408. doi: 10.1097/00006534-199910000-00025
38. Ribuffo D., Chiummariello S., Cigna E. et al. Salvage of a free flap after late total thrombosis of the flap and revascularization. Scand J. Plast. Reconstr. Surg. 2004;38:50-52. doi: 10.1080/02844310310007872
39. Anajat M., Rozen W.M., Wihtaker I.S. et al. How long fasciocutaneous are flaps dependant on their vascular pedicle: a unique case of SIEA flap survival. J. Plast. Reconstr. Aesthet. Surg. 2010;63:15. doi: 10.1016/j.bjps.2009.03.009. Epub 2009 May 15
40. Chubb D., Rozen W.M., Ashton M.W. Early survival of a compromised fasciocutaneous flap without pedicle revision: monitoring with photoplethysmography. Microsurgery. 2010;30: 462-465. doi: 10.1002/micr.20781
41. Kubo T., Haramoto U., Yano K. et al. Survival of free-tissue transfer following venous thrombosis. Plast. Reconstr. Surg. 2002;109:814. doi: 10.1097/00006534-200202000-00065
42. Asahara T., Masuda H., Takahashi T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 1999;85:221-228. doi: 10.1161/01.res.85.3.221
43. Black M.J., Chait L., O’Brien B.M. et al. How soon may the axial vessels of a surviving free flap be safely ligated: a study in pigs. Brit. J. Plast. Surg. 1978;31:295-299. doi: 10.1016/s0007-1226(78)90114-5
44. Kadota H., Sakuraba M., Kimata Y. et al. Analysis of thrombosis on postoperative day 5 or later after microvascular reconstruction for head and neck cancers. Head Neck. 2009;31:635-641. doi: 10.1002/hed.21021
45. Clarke H.M., Howard C.R., Pynn B.R. et al. Delayed neovascularization in free skin flap transfer to irradiated beds in rats. Plast. Reconstr. Surg. 1985;75:560-564. doi: 10.1097/00006534-198504000-00021
46. Barret K., Boitano S., Barman S. et al. Blood as circulatory fluid and the dynamics of blood and lymph flow: Ganong‘s Review of Medical Physiology. New York: McGraw-Hill, 2012 (Chapter 31).
47. Franz M. Wound healing. In: Doherty G. (ed.) Current diagnosis and treatment: Surgery. 13th ed. New York: McGraw-Hill, 2010 (Chapter 6).
48. Giunta R.E., Holzbach T., Taskov C. et al. AdVEGF165 gene transfer increases survival in overdimensioned skin flaps. J. Gene Med. 2005; 7(3):297-306. doi: 10.1002/jgm.675
49. Kazenov D.V. Sravnitel'naya harakteristika regeneratornogo protsessa obshirnyh hirurgicheskih ran pri primenenii angiogenina i kuriozina (eksperimental'noye issledovaniye). Avtoref. dis. kand. med. nauk [Comparative characteristics of the regenerative process of extensive surgical wounds with the use of angiogenin and curiosin (experimental study): Author. Diss. Cand. Med. sci. Novosibirsk, 2006, 23 p. (In Russ).
50. Granzow J., Li A.I., Caton A. et. al. Free flap survival following failure of the vascular pedicle. A. Plast. Surg. 2015;75(1):44-48. doi: 10.1097/SAP.0000000000000136
51. Mucke T., Bergmann A., Wagenpfeil S. et al. Autonomization of epigastric flaps in rats. Microsurgery. 2011;31(6):472-478. doi: 10.1002/micr.20892. Epub 2011 Apr 18
52. Mucke T., Wolff K.D., Rau A. et al. Autonomization of free flaps in the oral cavity: a prospective clinical study. Microsurgery. 2012;32:201-206. doi: 10.1002/micr.20984. Epub 2012 Jan 20
53. Bachelor A.G.G. Reverse flow as an option in microvascular recipient anastomoses (discussion). Plast. Reconstr. Surg. 1977;100:1786-1787. doi: 10.1097/00006534-199712000-00021
54. Ad Ell D.D., Sichel J.E. Reversed-flow external jugular vein: an optional recipient vessel in microsurgical head and neck reconstruction. Plast. Reconstr. Surg. 2004;113:1873-1875. doi: 10.1097/01.prs.0000119872.60605.90
55. Shin H.-S. et al. An alternative option to overcome difficult venous return in head and neck free flap reconstruction. J. Plast. Reconstr. Aesthet. Surg. 2013;66:1243-1247. doi: 10.1016/j.bjps.2013.05.034. Epub 2013 Jun 13.
56. Schneider D.S., McClain L., Robb P.K. et al. Use of internal mammary vessels in head and neck microvascular reconstruction. Arch. Otolaryngology. Head Neck Surg. 2012;138(2):172-176. doi: 10.1001/archoto.2011.1150
57. Roche N.A., Houtmeyers P., Vermeersch H.F. et al. The role of the internal mammary vessels as recipient in secondary and tertiary head and neck reconstruction. J. Plast. Reconstr. Aesthet. Surg. 2012;65(7):885-892. doi: 10.1016/j.bjps.2012.01.006. Epub 2012 Jan 27.
58. Sturtz G., Heidekruger P.I.D., Ninovic M. Die Arteria und Vena thoracica interna als alternative Anschlussgefasse fur die microchirurgische Rekonstruktion von Defekten im Kopf- und Halsbereich beim gefassverarmten Hals. Handchir. Mikrochir. Plast. Chir. 2012, Bd. 44(02):75-79. doi: 10.1055/s-0031-1299767 Epub 2012 Apr 11.
59. Buck P.M, Wax M.K., Petrizor D.I. Internal mammary vessels: alternate recipient vessels in microvascular head and neck reconstruction. J. Oral. Maxillofac. Surg. 2016; 74(9):1896.e1-6. doi: 10.1016/j.joms.2016.02.015 Epub 2016 Feb 27.
60. Murray A.C.A., Rozen W.M., Alonso-Burgos A. et al. The anatomy and variations of the internal thoracic (internal mammary) artery and implications in autologous breast reconstruction: clinical anatomical study and literature review. Surg. Radiol. Anat. 2012; 34(2):159-165. doi: 10.1007/s00276-011-0886-7 Epub 2011 Oct 11.
61. Cook J.A., Tholpady S.S., Omeni A. et al. Predictors of internal mammary vessel diameter: a computed tomographic angiography assisted anatomic analysis. J. Plast Reconstr. Aesthet. Surg. 2016;69(10):1340-1348. doi: 10.1016/j.bjps.2016.07.005. Epub 2016 Jul 12.
62. Urken M., Higgins K.M., Lee B. et al. Internal mammary artery and vein: recipient vessels for free tissue transfer for the head and neck 0n the vessel-depleted neck. Head Neck. 2006;28:797-801. doi: 10.1002/hed.20409
63. Ethunandan M., Cole R., Flood T.R. Corlett loop for microvascular reconstruction in a neck depleted of vessels. Brit. J. Oral Maxillofac. Surg. 2007;45:493-495. doi: 10.1016/j.bjoms.2006.08.014. Epub 2006 Oct 4.
64. Aycock J.K., Stenson K., Gottlieb L.J. The thoracoacromial trunk: alternative recipient vessels in reoperative head and neck reconstructive microsurgery. Plast. Reconstr Surg. 2008;121:88-94. doi: 10.1097/01.prs.0000293858.11494.96
65. Quilichini J., Benjoar M.D., Hivelin M. et al. Semi-free radial forearm flap for head and neck reconstruction in vessel-depleted neck after radiotherapy or radical neck dissection. Microsurgery, 2012;32:269-274. doi: 10.1002/micr.21945 Epub 2012 Feb 27
66. Karle W.E., Anand S.M., Clain J.B. et al. Use of combined latissimus dorsi scapular free flap revascularized with vein grafting to the internal mammary artery in a vessels-depleted and previously irradiated neck. Head Neck. 2013;35:e328-332. doi: 10.1002/hed.23194 Epub 2012 Nov 14.
67. Bozikov K., Arnez Z.M. Factors predicting free flap complications in head and neck reconstruction. J. Plast. Reconstr. Aesthet. Surg. 2006;59:737-742. doi: 10.1016/j.bjps.2005.11.013 Epub 2006 Feb 21.
68. Wolff K.-D., Holzle F., Eufinger H. The radial forearm flap as a carrier for the osteocutaneous fibula graft in mandibular reconstruction. Int. J. Oral Maxillofac. Surg. 2003;32:614-618. doi: 10.1054/ijom.2002.0395
69. Wolff K.-D., Mucke T., Lehmbrock J. et al. Repid autonomisation of a combined fibular and antero-lateral thigh flap transferred by a wrist carrier to an irradiated and vessel depleted neck. J. Surg. Oncol. 2009;99:123-126. doi: 10.1002/jso.21205
70. Wolff K.-D., Mucke T., von Bomhard A. et al. Free flap transplantation using an extracorporeal perfusion device: first three cases. J. Craniomaxillofac. Surg. 2016;44(2):148-154. doi: 10.1016/j.jcms.2015.11.007 Epub 2015 Dec 1.
71. Kayser M.R. Surgical flaps. Selected Readings in Plastic Surgery. 1999;9:1-63.
72. Lorenzetti F., Giordano S., Suominen S.et al. Intraoperative hemodynamic evaluation of the radial and ulnar arteries during free radial forearm flap procedure. J. Reconstr. Microsurg. 2010;26:73-77. doi: 10.1055/s-00291242135 Epub 2009 Nov 9.
73. Lorenzetti F., Giordano S., Tukiainen E. Intraoperative hemodynamic evaluation of the latissimus dosi muscle flap: a prospective study. J. Reconr. Microsurg. 2012;28:273-278. doi: 10.1055/s-0032-1311685 Epub 2012 Apr 10.
74. Lorenzetti F., Suominen S., Tukiainen E. et al. Evaluation of blood flow in free microvascular flaps. J. Reconstr. Microsurg. 2001;17:163-167. doi: 10.1055/s-2001-14347
75. Wolff K.-D., Fichter A., Braun C. et al. Flap raising on pulsatile perfused cadaveric tissue: a novel method for surgical teaching and exercise. J. Craniomaxillofac. 2014;42:1423-1427. doi: 10.1016/j.jcms.2014.04.004 Epub 2014 May 20.
76. Wolff K.-D. New aspects in free flap surgery: mini-perforator flaps and extracorporeal flap perfusion//J. Stomatol. Maxillofac. Surg. 2017;118(4):238-241. doi: 10.1016/j.jormas.2017.06.004 Epub 2017 Jun 19.
77. Holzle F., Rau A., Loeffelbein D.J. et al. Results of monitoring fasciocutaneous, myocutaneous, osteocutaneous and perforator flaps: 4-year experience with 166 cases. Int. J. Oral Maxillofac, Surg. 2010;39:21-28. doi: 10.1016/j.ijom.2009.10.012 Epub 2009 Nov 26.
78. Fichter A.M., Ritschl L.M., Rau A. et al. J. Free flap rescue using an extracorporeal perfusion. J. Craniomaxillofac. Surg. 2016;44(12):1889-1895. doi: 10.1016/j.jcms.2016.09.010 Epub 2016 Sep 23.
79. Carrel A., Lindbergh C.A. The culture of whole organs. Science. 1935;81:621-623.
80. Blaisdell F.M. The pathophysiology of skeletal muscle ischemia and reperfusion syndrome: a review. Cardiovasc. Surg. 2002;10:620-630. doi: 10.1016/s0967-2109(02)00070-4
81. Taeger C.D., Friedrich O., Dragu A. et al. Assessing viability of extracorporeal preserved muscle transplants using external field stimulation: a novel tool to improve methods prolonging bridge to transplantation time. Sci. Rep. 2015;5:11956. doi: 10.1038/srep11956
82. Ozturk M.B., Aksan T., Ozcelik I.B. et al. Extracorporeal free flap perfusion using extracorporeal membrane oxygenation device. An experimental model. Ann. Plast. Surg. 2019; 83(6):702-708. doi: 10.1097/SAP.0000000000002014
Review
For citations:
Baytinger V.F., Selianinov K.V. Fatal complications in reconstructive plastic surgery and ways of their prevention. Issues of Reconstructive and Plastic Surgery. 2021;24(3-4):7-29. (In Russ.) https://doi.org/10.52581/1814-1471/78-79/01